Uncovering Locally Discriminative Structure for Feature Analysis

نویسندگان

  • Sen Wang
  • Feiping Nie
  • Xiaojun Chang
  • Xue Li
  • Quan Z. Sheng
  • Lina Yao
چکیده

Manifold structure learning is often used to exploit geometric information among data in semi-supervised feature learning algorithms. In this paper, we find that local discriminative information is also of importance for semisupervised feature learning. We propose a method that utilizes both the manifold structure of data and local discriminant information. Specifically, we define a local clique for each data point. The k-Nearest Neighbors (kNN) is used to determine the structural information within each clique. We then employ a variant of Fisher criterion model to each clique for local discriminant evaluation and sum all cliques as global integration into the framework. In this way, local discriminant information is embedded. Labels are also utilized to minimize distances between data from the same class. In addition, we use the kernel method to extend our proposed model and facilitate feature learning in a high-dimensional space after feature mapping. Experimental results show that our method is superior to all other compared methods over a number of datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

متن کامل

Learning to Focus Attention on Discriminative Regions for Object Detection

A major task of visual attention is to focus processing on regions of interest to enable rapid and robust object search. Instead of integrating generic feature extraction into object specific interpretation we strictly pursue a top-down approach. Early features are tuned to selectively respond to task related visual features, i.e., locally discriminative information that is useful in object rec...

متن کامل

Locally discriminative topic modeling

Topic modeling is a powerful tool for discovering the underlying or hidden structure in text corpora. Typical algorithms for topic modeling include probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA). Despite their different inspirations, both approaches are instances of generative model, whereas the discriminative structure of the documents is ignored. In this p...

متن کامل

Complex feature analysis of center of pressure signal for age-related subject classification

Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016